Calcium-induced inactivation of calcium current causes the inter-burst hyperpolarization of Aplysia bursting neurones.
نویسندگان
چکیده
A triphasic series of tail currents which follow depolarizing voltage-clamp pulses in Aplysia neurones L2-L6 was described in the preceding paper (Kramer & Zucker, 1985). In this paper, we examine the nature of the late outward component of the tail current (phase III) which generates the inter-burst hyperpolarization in unclamped cells. The phase III tail current does not reverse between -30 and -90 mV, and is relatively insensitive to the external K+ concentration. In contrast, Ca2+-dependent K+ current (IK(Ca)), elicited by intracellular Ca2+ injection, reverses near -65 mV, and the reversal potential is sensitive to the external K+ concentration. Addition of 50 mM-tetraethylammonium (TEA) to the bathing medium causes a small increase in the phase III tail current. In contrast, IK(Ca) is completely blocked by addition of 50 mM-TEA. The phase III tail current is suppressed by depolarizing pulses which approach ECa, is blocked by Ca2+ current antagonists (Co2+ and Mn2+), and is blocked by intracellular injection of EGTA. The phase III tail current is reduced by less than 10% after complete removal of extracellular Na+. These bursting neurones have a voltage-dependent Ca2+ conductance which exhibits steady-state activation at a membrane potential similar to the average resting potential of the unclamped cell (i.e. -40 mV). The steady-state Ca2+ conductance can be inactivated by Ca2+ injection, or by depolarizing pre-pulses which generate a large influx of Ca2+. The steady-state Ca2+ conductance has a voltage dependence similar to that of the phase III tail current. The Ca2+-dependent inactivation of the steady-state Ca2+ conductance occurs in parallel with the phase III tail current; both have a similar sensitivity to Ca2+ influx, and both processes decay with similar rates after a depolarizing pulse. Hence, we propose that the phase III tail current is due to the Ca2+- dependent inactivation of a steady-state Ca2+ conductance. The decay of IK(Ca) following simulated spikes or bursts of spikes is rapid (less than 1 s) compared to the time course of the phase III tail current and the inter-burst hyperpolarization (tens of seconds). Thus, we conclude that IK(Ca) does not have a major role in terminating bursts or generating the inter-burst hyperpolarization in these cells. We present a qualitative model of the ionic basis of the bursting pace-maker cycle. The central features of the model are the voltage-dependent activation and the Ca2+-dependent inactivation of a Ca2+ current.
منابع مشابه
A cyclic GMP analog decreases the currents underlying bursting activity in the Aplysia neuron R15.
Bath application of 8-parachlorophenylthio-cyclic GMP (8-pcpt-cGMP) has been shown to increase the number of action potentials per burst in the Aplysia neuron R15. Here we report that 8-pcpt-cGMP can eventually inhibit R15's bursting activity and cause the cell to exhibit slow tonic spiking activity. This action is preceded by decreases in spike frequency and in the amplitude of the interburst ...
متن کاملHybrid systems analysis of the control of burst duration by low-voltage-activated calcium current in leech heart interneurons.
The leech heartbeat CPG is paced by the alternating bursting of pairs of mutually inhibitory heart interneurons that form elemental half-center oscillators. We explore the control of burst duration in heart interneurons using a hybrid system, where a living, pharmacologically isolated, heart interneuron is connected with artificial synapses to a model heart interneuron running in real-time, by ...
متن کاملTITLE: Hybrid Systems Analysis of the Control of Burst Duration by Low-Voltage-Activated Calcium Current in Leech Heart Interneurons
The leech heartbeat CPG is paced by the alternating bursting of pairs of mutually inhibitory heart interneurons that form elemental half-center oscillators. We explore the control of burst duration in heart interneurons using a hybrid system, where a living, pharmacologically isolated, heart interneuron is connected with artificial synapses to a model heart interneuron (Hill et al. 2001) runnin...
متن کاملSerotonin acting via cyclic AMP enhances both the hyperpolarizing and depolarizing phases of bursting pacemaker activity in the Aplysia neuron R15.
Bath application of 5-HT, at concentrations below 10 microM, enhances the amplitude of the interburst hyperpolarization in the Aplysia bursting pacemaker neuron R15. It is known that 5-HT acts via cyclic AMP to produce this effect by increasing the inwardly rectifying potassium current (IR). Here, we report that further elevating the concentration of 5-HT produces an enhancement of the depolari...
متن کاملDendritic control of spontaneous bursting in cerebellar Purkinje cells.
We investigated the mechanisms that contribute to spontaneous regular bursting in adult Purkinje neurons in acutely prepared cerebellar slices. Bursts consisted of 3-20 spikes and showed a stereotypic waveform. Each burst developed with an increase in firing rate and was terminated by a more rapid increase in firing rate and a decrease in spike height. Whole-cell current-clamp recordings showed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of physiology
دوره 362 شماره
صفحات -
تاریخ انتشار 1985